

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

BTS QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

Session 2002

E2 – MATHÉMATIQUES ET SCIENCES PHYSIQUES

U22 – SCIENCES PHYSIQUES

CORRIGÉ

I. LES ACIDES DU VIN

- 1. acide tartrique = acide 2, 3 dihydroxybutanedioïque acide succinique = acide butanedioïque acide malique = acide 2 hydroxybutanedioïque acide lactique = acide 2 hydroxypropranoïque
- 2. acide malique

acide lactique:

Les énantiomères R et S font tourner le plan de polarisation de la lumière en sens opposé.

code: QAPHY page 1/5

II. DOSAGE DES IONS POTASSIUM DANS UN VIN BLANC

A. Principe et fonctionnement de l'appareil

- 1. a. Pour utiliser la raie la plus intense du potassium (distincte des raies du lithium et du sodium) à 770 nm, on utilise le filtre 4.
 - **b.** Pour Li: filtre 3 (on acceptera filtre2)

Pour Na : filtre 1

- 2. Photodiode moins sensible que phototransistor mais
 - temps de réponse plus rapide que phototransistor
 - réponse en fonction du flux lumineux plus linéaire que la réponse en fonction du flux lumineux du phototransistor.
- L'intensité lumineuse affichée est proportionnelle à la concentration en potassium de 0 à 50 ppm, valeur que l'on ne dépassera pas, ce qui correspond à une concentration : $[K^+] \le 50$. mg . L⁻¹.

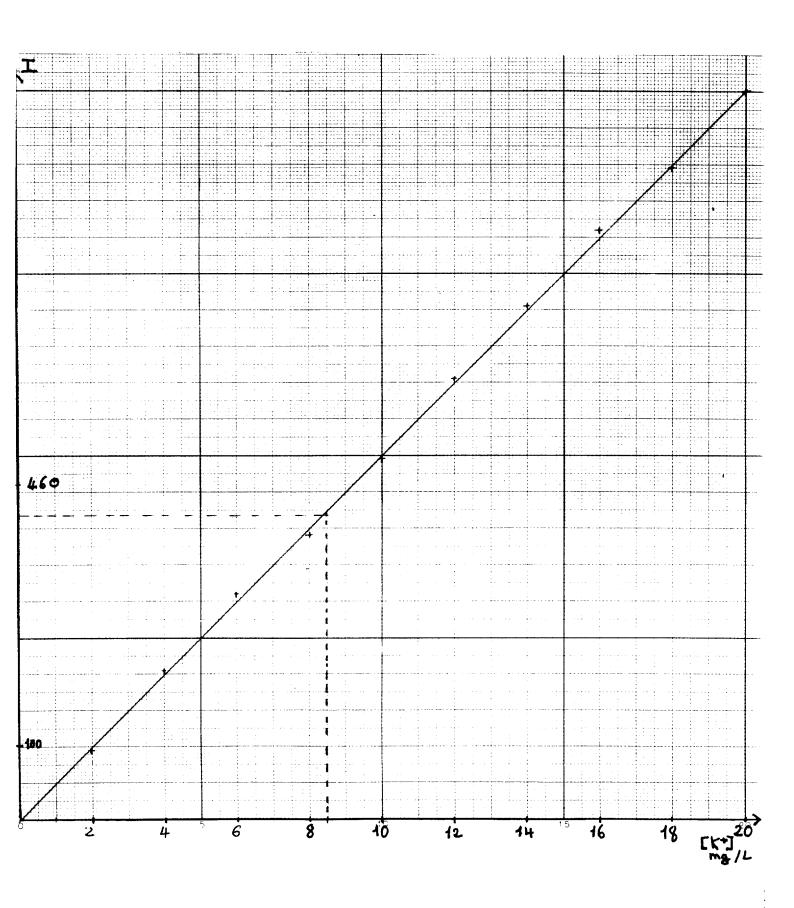
B. Utilisation de l'appareil pour le dosage des ions potassium.

- 1. La première gamme est en dehors des limites fixées par le constructeur. On utilisera donc la 2^{ème} gamme pour des concentrations inférieures à 50 mg. L⁻¹.
- 2. À partir de la gamme 2

Étalon	1	2	3	4	5	6	7	8	9	10	Échantillon
I	95	205	310	390	495	605	705	810	895	1000	460
[K ⁺] (mg / L)	2	4	6	8	10	12	14	16	18	20	

On trace la courbe $I = f([K^+])$

Échelle: $1 \text{ cm} \leftrightarrow 1 \text{ mg. L}^{-1}$


unité intensité lumineuse ↔ 2 cm

(voir graphe page 3/5)

À l'aide du graphe on retrouve alors la valeur de l'échantillon pour I = 460, on obtient $[K^+] = 9.2 \text{ mg}$ / L or le vin a été dilué 100 fois. Donc dans le vin on trouve : $[K^+] = 0.92 \text{ g} \cdot L^{-1}$.

code: QAPHY page 2/5

Graphe : $I = f([K^+])$

code: QAPHY page 3/5

III. DOSAGE DES IONS FER II DANS UN VIN BLANC

A. Description du spectrophotomètre

1. Réseau : ensemble de traits (ou de fentes) équidistants et parallèles entre eux.

Un réseau sert pour les phénomènes de diffraction – interférence, à disperser la lumière blanche.

Pas du réseau :

$$a = \frac{10^{-3}}{1200} = 8.310^{-7} \text{ m}$$

= distance entre 2 traits.

Limite du domaine visible : 400 nm ≤ λ ≤ 750 nm
 Domaine lumière visible : lampe à halogène à filament de tungstène entre 300 et 1000 nm.

La lampe au deutérium est utilisée pour réaliser des spectres dans l'ultraviolet.

3. Le verre absorbe les UV.

B. Réalisation d'un spectre d'aborption

Le complexe absorbe à peu près 460 nm.

La couleur du complexe est complémentaire à celle absorbée → rouge – orangé.

On choisit la longueur d'onde correspondant au maximum d'absorption pour les mesures (et pour avoir la plus grande précision).

C. Loi de BEER - LAMBERT

 $A = \in . \ell . c$

A : absorbance sans unité

€ : coefficient d'extinction unité usuelle L.mol⁻¹ cm⁻¹ unité S-I- mol⁻¹ m²

 ℓ : longueur du trajet optique dans la solution en m

 $C: concentration\\ unit\'e usuelle mol . L^{-1}\\ unit\'e S . I . mol . m^{-3}$

D. Utilisation pour le dosage des ions fer II

1. Réaction 1 :
$$2 \text{ Fe}^{2+} + \text{H}_2 \text{ O}_2 + 2 \text{ H}^+ \rightarrow 2 \text{ Fe}^{3+} + 2 \text{ H}_2 \text{ O}$$

Réaction 2 : $\text{Fe}^{3+} + \text{SCN}^- \rightarrow \text{Fe SCN}^{2+}$

2. Quantité de fer pour une solution à 100 mg . L⁻¹ :
$$n = \frac{m}{M_{Ee}}$$

$$n = \frac{100 \cdot 10^{-3}}{56}$$

Quantité d'alun de fer III pour 1 L :
$$\frac{100 \cdot 10^{-3}}{56} = n$$

Masse d'alun de fer III pour 1 L : m = n . $M_{alun de fer III}$

AN:
$$m = \frac{100 \cdot 10^{-3}}{56} \cdot 482 = \frac{0,100 \times 482}{56}$$

 $m = 0,861$ g

3.

Concentration en fer mg.L ⁻¹	0	2	4	6	8	
Absorbance	0	0,303	0,567	0,823	1,138	
$\frac{A}{C} = \epsilon \cdot \ell = k$ en L. mg ⁻¹	/	0,152	0,142	0,137	0,142	

$$k = 0.143 L \cdot mg^{-1}$$

et pour l'échantillon :
$$C = \frac{A}{k}$$

AN $C \sim 4.1 \text{ mg} \cdot \text{L}^{-1}$ (vin non dilué et il y a autant de Fe²⁺ que de Fe³⁺ complexé)

4. **a.**
$$Fe^{3+} + PO_4^{3-} \rightarrow Fe PO_4$$
 phosphate de fer III

- **b.** Le contact à l'air permet l'oxydation de Fe^{2+} en Fe^{3+}
- c. Pour le vin précédent $C < 10 \ mg$. L^{-1} et donc ne présente pas le risque de "casse ferrique".